

MODEL GENERATION TECHNICAL REPORT

Generation of a Dre deleter C57BL/6N line

Project code: Ros6728 / IR6728

Report finalized: 1/03/2023

Project process & quality controls

Project process & quality controls

Target locus structure

Genetic strategy

Sequence of the Dre recombinase

Location:

chromosome 6 Al A2 A3.1 A3.3 B1 B3 CL C3 D1 D3 E1 E3 F1 F3 G1 G2 G3

Gt(ROSA)26Sor (ENSMUSG0000086429)

	<u> </u>		- 1.00 Mb				Forward strand	
Characteristic based of	112.60 Mb 112.70 Mb	112.80 Mb 112.90 Mb	113.00 Mb	113.10 Mb	113.20 Mb	113.30 Mb	113.40 Mb	113.
Chromosome bands			ES					
Contigs								
Ensembl/Havana g	Gm5578 Gman3		4Thumpd3	L bfpl4	-Mtror14 -			neml
	LRad18	^L Gm613	4 ^L Setd5	- Chiph	^L Cpne9	Tada 3 L		
					Brp	fl ^L Arpc4	LII17rc	Fanco
					i i i	Camk1 ^L R	ousd3 ^L Pnt3	
					^L Gm161	61	LII17re	
					^L Gm	15492		
Ensembl/Havana	- Gm16598		Gt(ROSA)26Sor				
ncRNA gene								
	00.00		LIE 508					
	112.60 Mb 112.70 Mb	112.80 Mb 112.90 Mb	113.00 Mb	11310 Mb	113 20 Mb	113 30 Mb	113 40 Mb	113
	Ensembl Mus musculus version 6	1.37n (NCBIM37) Chromos	some 6: 112.5	522.375 - 11	3.522.374	110.00 010	110.40 000	110.
Gene Legend	protein coding			proc	essed transc	ript		
	merged Ensembl/Havana			psei	udogene			
	KIVA gene							

Strategy

Targeted locus

Repeated regions

Sequence of the Dre recombinase (cf. Stewart's paper)

	ATG	GGT	GCT	AGC	GAG	CTG.	ATC.	ATC	TCT	GGC	TCC	TCT	GGA	GGA	TTC	CTG	AGG	AAC	ATC	GGC	AAG	GAG	TAC	CAG	GAG	GCT	GCT	GAG	AAC:	LLLL	ATGI	AGA.	LLC1	ATG/	AAT	GAC	CAG	GGA
►	М	G	А	S	Е	L	I	I	S	G	S	S	G	G	F	L	R	Ν	I	G	К	Е	Υ	Q	Е	А	А	Е	Ν	F	М	R	F	М	Ν	D	Q	G
	GCC	TAC	GCC	CCT	AAC.	ACC	CTG	AGA	GAC	CTG	AGG	CTG	GTG	TTC	CAC	FCC'	TGG	GCT.	AGA'	TGG	TGC	CAC	GCT	AGA	CAG	CTG	GCC'	TGG	TCC	CCTA	ATCI	ГСТС	ССТС	GAG/	ATG	GCT/	AGG	GAG
►	Α	Υ	А	Р	Ν	Т	L	R	D	L	R	L	V	F	Н	S	W	А	R	W	С	н	А	R	Q	L	А	W	F	Р	I	S	Р	Е	М	А	R	Е
	TAC	TTC	CTT	CAG	CTG	CAC	GAT	GCT	GAC	CTG	GCC	тсти	ACC	ACC	ATC	GAC	AAG	CAC'	TAC	GCC	ATG	CTG	AAC.	ATG	CTG	CTG	rcco	CACI	GTO	GGC	CTGC	CTC	ССТС	CTGT	ГСТО	GAT	GACI	AAG
►	Y	F	L	Q	L	н	D	А	D	L	А	S	Т	Т	T	D	К	Н	Y	А	М	L	Ν	М	L	L	s	Н	С	G	L	Р	Р	L	s	D	D	К
	TCT	GTG	AGC	CTG	GCC	ATG	AGGI	AGA	ATC	CGG	AGA	GAG	GCT	GCC	ACCO	GAGA	AAGO	GGA	GAGA	A GA	ACC	GGC	CAG	GCC	ATC	ССТ	CTG.	AGA'	ГGG	GAT	GAC	CTG	AAG	CTG	CTG	GAT	GTG	CTG
►	s	V	S	L	А	М	R	R	I	R	R	Е	А	А	Т	Е	К	G	Е	R	т	G	Q	А	Т	Р	L	R	W	D	D	L	К	L	L	D	V	L
	СТС	TCT	'AGA	TCT	GAG.	AGA	CTG	GTG	GAC	CTG	AGG	AAT.	AGG	GCC	TTC	CTG	TTT	GTG	GCC'	TAC	AAC	ACC	CTG	ATG	AGG	ATG	TCT	GAG	ATCI	ICT <i>I</i>	AGGI	ATC/	AGA	GTG	GGA	GAC	CTG	GAC
►	L	s	R	s	Е	R	L	V	D	L	R	Ν	R	А	F	L	F	V	А	Y	Ν	т	L	М	R	М	s	Е	I	s	R	I	R	V	G	D	L	D
	CAG	ACC	GGA	GAC	ACC	GTG	ACC	CTG	CAC	ATC	TCC	CAC	ACC	AAG	ACC	ATC	ACC	ACC	GCT	GCT	GGC	CTG	GAC	AAA	GTG	CTG	ГСТИ	AGGI	AGGZ	ACCA	1CCC	GCT(GTG	CTGF	AATO	GACT	rgg(CTG
►	Q	т	G	D	т	V	т	L	н	Т	s	н	т	к	т	I	т	т	А	А	G	L	D	к	V	L	S	R	R	т	т	А	V	L	Ν	D	W	L
	GAT	GTG	TCT	GGC	CTG	AGA	GAG	CAC	ССТ	GAC	GCT	GTG	CTG	TTC	ССТО	CCTZ	ATCO	CAC	CGGI	AGCI	AAC	AAG	GCT.	AGG.	ATC	ACCA	ACCZ	ACCO	ССТС	CTGA		JCCC	ССТС	GCCF	ATGO	GAGF	AAGI	ATT
►	D	V	S	G	L	R	Е	н	Р	D	А	V	L	F	Р	Р	I	н	R	S	Ν	к	А	R	I	т	т	т	Р	L	т	А	Р	А	М	Е	К	I
	ттт	'AGC	GAT	GCC	TGG	GTG	CTG	CTG	AAC	CAAG	AGG	GAT	GCC.	ACC	CCT	AAC	AAG	GGC	CGC'	TAC	CGG.	ACC	TGG	ACC	GGC	CAC'	гст	GCT	AGA	GTG	GGA(GCT	GCCI	ATC	GAC	ATG	GCT	GAG
•	F	S	D	А	W	V	L	L	Ν	К	R	D	А	Т	Р	Ν	К	G	R	Y	R	Т	W	Т	G	Н	S	А	R	V	G	А	А	1	D	М	A	Е
	AAG	CAA	GTG	TCC	ATG	GTG	GAG	ATC.	ATG	CAG	GAG	GGC	ACC'	TGG.	AAA	AAG	ССТО	GAG	ACA	CTG	ATG	AGA'	TAC	CTG	AGG	AGG	GGA	GGA	GTGI	гсто	TG	GGA(GCCZ	AAC	ГСТИ	AGG(CTG	ATG
►	К	Q	V	s	М	V	Е	I	М	Q	Е	G	Т	W	К	К	Р	Е	Т	L	М	R	Y	L	R	R	G	G	V	s	V	G	A	N	s	R	L	М
	GAC	тсс	GCT	AGC	GGC	GCC	GGT	ССТ	AAG	AAG	AAG	AGG	ΑΑΑ	- GTTG'	TGA																							
										0					1																							

D S A S G A G P K K K R K V

Sequence (codon optimized) from Anastassiadis et al, 2009 Disease Models & Mechanisms 2,508-515

- Electroporation and screening process
- Long range PCR screening strategy
- Long-Range 3' PCR screening results
- Recombinant ES validation by Long Range PCR
- Recombinant ES clones validation by Southern Blot internal probe
- Recombinant ES clones validation by Southern Blot External probe
- Aneuploidy screening in ES recombinant clones

The whole process of ES cells validation is described in Erbs et al.*.

The circular targeting vector was co-electroporated with a pX330 derived CRISPR/Cas9 vector expressing spCas9 and the RNA (CGCCCATCTTCTAGAAAGAC) in the proprietary C57BL/6NCrl S3 cell line.

Transfected ES clones were submitted to neomycin selection (G418) and 93 resistant ES clones were isolated. The clones were then submitted to the screening process allowing secured identification of those harbouring the expected recombination events at both ends of targeting vector.

Screening process steps:

- 1. Identification of candidate recombinant clones by initial 3' Long-Range PCR
- 2. Four of 3' PCR positive clones are confirmed for 5' recombination event by Long-Range PCR. The absence of backbone was checked by PCR (Erbs et al., 2023*).
- 3. Positive clones in step2 are further validated by Southern blot analysis using internal and external probes
- 4. The karyotype of at least 2 validated clones is verified using ddPCR aneuploidy screening and Giemsa staining

*Erbs V, Lorentz R, Eisenman B, Schaeffer L, Luppi L, Lindner L, Hérault Y, Pavlovic G, Wattenhofer-Donzé M, Birling MC. Increased On-Target Rate and Risk of Concatemerization after CRISPR-Enhanced Targeting in ES Cells. Genes (Basel). 2023 Feb 3;14(2):401. doi: 10.3390/genes14020401. PMID: 36833328; PMCID: PMC9957269.

Schematic 5' and 3' PCR screening strategy

PCR	Primer Name	Primer sequences	PCR product size
	Fext	CCTAAAGAAGAGGCTGTGCTTTGGG	1.0.1.1
5 PCR	Rneo	GCGGCCGGAGAACCTGCGTGCAATC	1.8 KD
2' DCD	Fdre	ATGGCTGAGAAGCAAGTG	17kh
5 PCK	Rext	CTCAGTGGCTCAACAACACTTGGTC	4.7 KU
2' DCD	Fki	GGCTCTAGAGCCTCTGCTAACCATG	EQLA
5 PCK	Rext	CTCAGTGGCTCAACAACACTTGGTC	5.6 KU
2' DCD	Fint	CTGGTGTGTGGGCGTTGTCCTGCAG	1.1.kb
5 PCR	Rext	CTCAGTGGCTCAACAACACTTGGTC	4.4 KD

Long-Range 3' PCR screening – results

Four candidate clones out of the 18 positive clones were selected for 5' Long-Range PCR and Southern blot validation.

Confirmation and Validation of candidate recombinant ES clones by 5' and 3' PCRs

Clones of interest

Four candidate clones identified by 3' PCR screening were further analysed by 5' PCR screening. Three clones (clones #51 #, #52 , #56 #) were confirmed. Although clone 56 was doubtful, it was included in the Southern Blot analyses.

EXCELLENCE IN MOUSE PHENOGENOMICS

Recombinant ES clones validation by Southern Blot – Internal probe

Schematic Southern Blot validation strategy

Digests on the scheme illustrate the position of the chosen restriction sites relative to the probe. They don't show the exact position of the restriction sites.

Southern blot - Neo Neo 3' Neo 5' 51 52 56 62 17 46 51 52 56 62 17 46 Pacl Nhel

Neo probe sequence

CTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTG CGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGG GCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAA GTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTAC TGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGGCTC GCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGA TCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATG GCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTAT CAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATG GGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCA TCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGGGGGATCCGCTGTAAGTC т

Digestions used to validate the 5' and 3' insertion

Probe		Genomic DNA digest	Targeted Allele (kb)
Noo	5' digest	Nhel	12.1
Neo	3' digest	Pacl	9.4

All clones (but #56) looked correct (only one band of the expected size observed with the 2 restriction digests)

Recombinant ES clones validation by Southern Blot – External probe

Probe	Name	Genomic DNA digest	WT allele (kb)	Targeted Allele (kb)
5' external	5' first digest	BstEll	4.7	9.5
probe	5' second digest	Sspl	4.1	8.9

Clone #51, #52 and #62 are correct.

Selected recombinant ES cells clones were karyotyped by ddPCR as described in Codner *et al.*¹ and by Giemsa metaphase staining. Results of aneuploidy analysis are presented in the table below.

Clone ID	ddPCR	Giemsa
#51	Pass	Pass
#52	Pass	Not done
#62	Pass	Not done

¹ Codner, G.F., Lindner, L., Caulder, A., Wattenhofer-Donzé, M., Radage, A., Mertz, A., Eisenmann, B., Mianné, J., Evans, E.P., Beechey, C.V., Fray, M.D., Birling, M.-C., Hérault, Y.,

Pavlovic, G., Teboul, L

Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biology 2016 doi:10.1186/s12860-016-0108-6

Microinjection

Breeding to F1 generation

- The ES cells used in the injection experiment were originally derived from a C57BL/6NCrl mouse strain (which have black coat colour). These cells were injected into blastocysts derived from an BALB/cN strain, which have a white coat colour. The resulting offspring are thus chimeras of two different cell types (ES cell-derived cells and host blastocyst-derived cells) and the degree of chimerism was monitored by the percentage of light and dark patches on these animals.
- Recipient blastocysts were isolated from mated BALB/cN females (Health status SPF Specific Pathogens Free).
- Recombinant ES clones #51 validated in previous project phase was injected into blastocysts to generate chimeric males. The results are presented in the table below.

	Number of chi	meric males iden rate of chimeric male	tified according e s bred to F1 ge	g to chimerism neration)
Clone ID	5 - 40%	45% - 55%	60-100%	Total
#51	4	1	13	18

- Four highly chimeric males generated in the previous phase by blastocyst injection of the ES clones were mated with C57BL/6NCrl Cre deleter females that show maternal contribution (Birling et al 2012*; health status SPF Specific Pathogen Free) to investigate whether the recombined ES cells have contributed to the germ layer.
- Germ line transmission was obtained the 06/06/2018
- Allele nomenclature as in MGI: Gt(ROSA)26Sor^{tm4.1(CAG-dre)Ics} (MGI:6467222)

*Birling MC, Dierich A, Jacquot S, Hérault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. 2012 Jun;50(6):482-9. doi: 10.1002/dvg.20826. Epub 2012 Mar 20. PMID: 22121025

SEQUENCE OF THE Tm1.1 ALLELE (after Cre mediated excision of the floxed NeoR cassette)

CTGAGGCCGCGATCGCAAGCTTATCGATACCGTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGGTCATTAGTAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCA ACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGA TTTTCCTACAGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTCGCCGCCACCATGGGTGCTAGCGAGGTCCTCTGGGCGAGGATTCCTGGGGAGGATCCTGGGCAAGGAGTACCAGGAGGAGTACCAGGAGGCTGC CTGAGAGAGCACCCTGACGCTGTGCTGTGCTGCTGCTCCTATCCACCGGAGCAACAAGGCTAGGATCACCACCACCCCTCTGACCACGCCCCTGCCATGGAGAAGATTTTTAGCGATGCCTGCTGCTGCTGCAACAAGAGGGATGCCACCCCTAACAAGG GGGAGCCAACTCTAGGCTGATGGACTCCGCTAGCGCCGCCGGCCCCGGTCCTAAGAAGAAGAAGAAGAAGAAGTGTGATGAATGCATAGAACTTATTAAAGCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAAAGCAACAAATAAAGAAGAAGAAGAAGAAGAAGAAGTGTGATGAATGCATCACAAACTTATTAAAGCAACTTGTTTATTGCAGCTTATAAATGGTTACAAATAAAGCAATAAGCAATAAAGCAAATTCAACAA ATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCATGTATCTTATCATGTCTGGTCGAGGCGGCGCGCGAGGAGTCTTCTGGGCAGGCTTAAAGGCTAACCTGGTGTGTGGGCGTTGTCCTGCAGGGGA ATTGAACAGGTGTAAAATTGGAGGGACAAGACTTCCCACAGATTTTCGGGTTTTGTCGGGAAGTTTTTTAATAGGGGGCAAATAAGGAAAATGGGAGGATAGTCATCTGGGGTTTTATGCAGCAAAACTACAGGTTATTATTGCTTGTGATC CGCCTCGGAGTATTTTCCATCGAGGTAGATTAAAGACATGCTCACCCGAGTTTTATACTCTCCTGCTTGAGATCCTTACTACAGTATGAAATTACAGTGTCGCGAGTTAGACTATGTAAGCAGAATTTTAAAGAGCCCAGTATTTAAAGAGCCCAGTACT TCATATCCATTTCTCCCGCTCCTTCTGCAGCCTTATCAAAAGGTATTTTAGAACACTCATTTTAGCCCCCATTTTCATTATATCTGGCTTATCCAACCCCTAGACAGAGCATTGGCATTT

LoxP

pCAG

SV40 pA

REPORT REDACTION & VALIDATION

Protocol finalized on 2023/02/16 Prepared by Romain LORENTZ, IE Verified by Marie-Christine BIRLING, PhD

CONTACT US By email at <u>mutagenesis@igbmc.fr</u> By phone at +33 (0)3 88 65 56 57

www.phenomin.fr

de la santé et de la rerherrite médicale

