

MODEL GENERATION TECHNICAL REPORT

Generation of a Fshr Cre-F3-ERT2-F3 KI line

Project code: Ros6278 / IR6278 Report updated: 16/05/2023

cnrs

Aim

Project process & quality controls

Project process & quality controls

Target locus structure

- mRNA(s) and protein(s)
- Genetic strategy
- PRO & CONS evaluation of the strategy

Chromosome 17: 89,292,380-89,508,103

Gene: Fshr ENSMUSG0000032937

Transcript ID	Name	bp	Protein	Biotype	CCDS	UniProt Match
ENSMUST0000035701.6	Fshr-201	2360	692 aa	Protein coding	CCDS29026	B2RQM3 P35378

Approach: Homologous recombination in C57BL/6N ES cells

Pros

- Expression of CreER^{T2} expected to follow the same pattern than the gene itself
- The endogenous Fshr expression should not be modulate (as WT)
- The ER^{T2} sequence (F3-ER^{T2}-F3) can be deleted *in vivo* by breeding males from the established line with Flp deleter females (see Birling et al. Genesis. 2012 Jun;50(6):482-9). So we will be able to obtain the non inductible Cre line also.

• Cons

- Presence of repeated sequences in both homology arms might render PCR amplification or LR-screen difficult
- The expression level of Cre-F3-ERT-F3 might be different (lower) than Fshr as an IRES will be used

B HOMOLOGOUS RECOMBINATION - VECTOR CONSTRUCTION

Created with Snap

- Electroporation and screening process
- Long range PCR screening strategy
- Long-Range 5' PCR screening results
- Recombinant ES validation by Long Range PCR
- Recombinant ES clones validation by Southern Blot internal probe
- Recombinant ES clones validation by Southern Blot External probe
- Aneuploidy screening in ES recombinant clones

The whole process of ES cells validation is described in Erbs et al.*.

The targeting vector was electroporated in the proprietary C57BL/6NCrl S3 cell line.

Transfected ES clones were submitted to neomycin selection (G418) and 93 resistant ES clones were isolated. The clones were then submitted to the screening process allowing secured identification of those harbouring the expected recombination events at both ends of targeting vector.

Screening process steps:

- 1. Identification of candidate recombinant clones by initial 5' Long-Range PCR
- 2. Eight of 5' PCR positive clones are confirmed for 3' recombination event by Long-Range PCR
- 3. Positive clones in step2 are further validated by Southern blot analysis using internal and external probes
- 4. The karyotype of at least 2 validated clones is verified using ddPCR aneuploidy screening and Giemsa staining

*Erbs V, Lorentz R, Eisenman B, Schaeffer L, Luppi L, Lindner L, Hérault Y, Pavlovic G, Wattenhofer-Donzé M, Birling MC. Increased On-Target Rate and Risk of Concatemerization after CRISPR-Enhanced Targeting in ES Cells. Genes (Basel). 2023 Feb 3;14(2):401. doi: 10.3390/genes14020401.

Schematic 5' and 3' PCR screening strategy

PCR	Primer Name	Primer sequences	PCR product size	
	Fext	GGCTGATTCTAATGCTCACCAGCAA	4.0 kb	
5 PCK	Rcre	CCAGATTACGTATATCCTGGCAGCG	4.8 KD	
5' PCR Fext Rneo	Fext	GGCTGATTCTAATGCTCACCAGCAA	7 9 kh	
	Rneo	AGGGGCTCGCGCCAGCCGAACTGTT	7.0 KU	
	Fext	GGCTGATTCTAATGCTCACCAGCAA	W/T · 4 2	
JPCK	Rint	GCTTCAGCAGCAGTGTTGATCCACA	VVI.4.5	
3' PCR	Fneo	GCGGCCGGAGAACCTGCGTGCAATC	2.2.1/h	
	Rext	GCTCTGTCAGATGGACAGAGGTAGT	5.2 KD	

Long-Range 5' PCR screening – results

PCRFext – Rcre : 4.8 kb

Fext – Rint : 4.3 kb

Eight candidate clones out of the 8 positive clones were selected for 3' Long-Range PCR and Southern blot validation.

Ladder pattern

Recombinant ES validation by Long Range PCR

Confirmation and Validation of candidate recombinant ES clones by 5' and 3' PCRs

ĊS

EXCELLENCE IN MOUSE PHENOGENOMICS

Eight candidate clones identified by 5' PCR screening were further analysed by 3' PCR screening. Eight clones (clones #9, #13, #24, #28, #44, #60, #63 and #68) were confirmed.

Recombinant ES clones validation by Southern Blot – Internal probe

Schematic Southern Blot validation strategy

Digests on the scheme illustrate the position of the chosen restriction sites relative to the probe. They don't show the exact position of the restriction sites.

Southern blot - Neo 3'

Digestions used to validate the 5' and 3' insertion

Probe		Genomic DNA digest	Targeted Allele (kb)
Neo	L' disset	Spel	9.1
	5 digest	Swal	11.2
	21 diment	Dralll	7.2
	3 algest	HindIII	10.9

Southern blot - Neo 5'

Neo probe sequence

- => All but clone #28 show a single band at the expected size with both restriction enzymes.
- => Clones #13 and #68 were further analysed by Southern blot with a 5' external probe.

Recombinant ES clones validation by Southern Blot – External probe

Southern blot – 5' probe

5' probe sequence

CCCTATTTATCTGCCATCTGGACTTCCAGTGAAGGCTGCCTCT ATTGCCTGCCAGATTCCTTTTCCATGGCATGTTCCCTTCTCAT CATTTTCTGTGATTCAGGCCACAGAAACCACCATAGTTCATTA GAGATATTTTTATTGCTTGCCTCACAGTGGCAGAAAATGGTTT CAATCTCAGGCACTAATCAACTACAGAAGAGAGAGATGGCTGATT CTAATGCTCACCAGCAAGGATTAAGCCCAAACCAGCCAGAATT CAAGCTTATCCAGTTTTAGGAGCAGCCTGCTACCTAACTCCTC TCATCAAGACCAGTAGAACC

Digestions used to validate the 5' and 3' insertion

Probe	Name	Genomic DNA digest	WT allele (kb)	Targeted Allele (kb)
5' external probe	5' first digest	Scal	7.6	12.2
	5' second digest	AfIII	14.5	19.1
	5' third digest	Hpal	13.6	18.2

Selected recombinant ES cells clones were karyotyped by ddPCR as described in Codner *et al.*¹ and by Giemsa metaphase staining. Results of aneuploidy analysis are presented in the table below.

Clone ID	ddPCR	Giemsa	
#9	Pass	Not done	
#13	Pass	Pass	
#24	Failed (loss of ChrY)	Not done	
#44	Failed (loss of ChrY and Chr8 trisomy)	Not done	
#60	Pass	Not done	
#63	Failed (loss of ChrY and Chr8 trisomy)	Not done	
#68	Pass	Not done	

¹ Codner, G.F., Lindner, L., Caulder, A., Wattenhofer-Donzé, M., Radage, A., Mertz, A., Eisenmann, B., Mianné, J., Evans, E.P., Beechey, C.V., Fray, M.D., Birling, M.-C., Hérault, Y.,

Pavlovic, G., Teboul, L

Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biology 2016 doi:10.1186/s12860-016-0108-6

Microinjection

Breeding to F1 generation

- The ES cells used in the injection experiment were originally derived from a C57BL/6 mouse strain (which have black coat colour). These cells were injected into blastocysts derived from an BALB/cN strain, which have a white coat colour. The resulting offspring are thus chimeras of two different cell types (ES cell-derived cells and host blastocyst-derived cells) and the degree of chimerism was monitored by the percentage of light and dark patches on these animals.
- Recipient blastocysts were isolated from mated BALB/cN females (Health status SPF Specific Pathogens Free).
- Recombinant ES clones #13 validated in previous project phase was injected into blastocysts to generate chimeric males. The results are presented in the table below.

	Number of chimeric males identified according to chimerism rate (Number of chimeric males bred to F1 generation)			
Clone ID	5 - 40%	45% - 55%	60-100%	Total
#13	3	0	8	11

Four highly chimeric males generated in the previous phase by blastocyst injection of the ES clones were mated with wild-type C57BL/6NCrl females (health status SPF – Specific Pathogen Free) to investigate whether the recombined ES cells have contributed to the germ layer.

Germ line transmission was obtained the 04/10/2017

Allele nomenclature (following MGI guidelines) : **Fshr**^{tm1.1(cre/ERT2)Ics}

^{⁶ SEQUENCE OF THE Cre-F3-ER^{T2}-F3 ALLELE}

AGCTGTATGTTATGGCCCTCCTCGTACTCAACGCCCTGGCCTTTGTGGTCATCTGTGGTTGCTACACCCCACATCTACCTCACAGTGAGGAATCCTAACATTGTGTCCTCGTCAAGAGACACCCAAGACTGCCAAGCGCCATGGCCACACTCATCTTCACGGACTTTCTCTG CATGGCCCCAATTTTATTCTTTGCCATTTCCGCCTCCTCAAGGTGCCCCTCATCACTGTGTCCAAGGCCAAGATCCTCCTAGTTCTGTTCTACCCCATCAATCCTTTGTGCCATTTCCACCAAGAACTTCCGCAGGGACTTCTTCGTCCTAGTCCTGATG CTCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTGACGAGCATTCCTAGGGGGTCTTTCCCCCTCTCGCCAAA GCACAACCCCAGTGCCACGTTGTGAGTTGGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGT TTTCGACCAGGTTCGTTCACTCATGGAAAATAGCGATCGCCAGGATATACGTAATCTGGCATTTCTGGGGATTGCTTATAACACCCTGTTACGTATGCCAGGATCAGGGTTAAAGATATCTCACGTACTGACGGTGGGAGAATGTTAATCCATA TTGGCAGAAACGCTGGTTAGCACCGCAGGTGTAGAGAAGGCACTTAGCCTGGGGGGTAACTAAACTGGTCGAGCGATGGATTCCGTCTCGGTGTGAGCTGATGATCCGAGTGTCGCGGGTCAGAAAAAATGGTGTTGCCGCGCGCCATCTG GAGCTCCCTGGCGGAATTCGGATCCAGATCTTATTAAAGCAGAACTTGTTTATTGCAGCTTATAATGGTTACAAAAGCAATAAAGCAATAGCATCACAAATTAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATGTATCTTATCATGGTTACAAAGCAATAAAGCAATAGCAATAA ATACATATGTATGATTGCTTCTGCTGTTCTGGCTGAACTCTAATGGAAAAATACACCTATTATATGGTATGCATATAGATTACAATGTTAAGAATGCAGCAGCTTTGAAGTCTAGAAGTTTTGTTCAGATTCTGTAATACACCAGGTTCAAGCTCTTCCAGCTCAC CT

IRES

Cre

F3

Linker F2

Rox

REPORT REDACTION & VALIDATION

Protocol finalized on 2023/02/13 Prepared by Romain LORENTZ, IE Verified by Marie-Christine BIRLING, PhD

CONTACT US By email at <u>mutagenesis@igbmc.fr</u> By phone at +33 (0)3 88 65 56 57

www.phenomin.fr

de la santé et de la rerherrite médicale

