EUCOMM/KOMP-CSD ‘Knockout-First’ Genotyping

Introduction

The majority of animals produced from the EUCOMM/KOMP-CSD ES cell resource contain the Knockout-First-Reporter Tagged Insertion allele. As well as gene specific elements, the targeting cassette contains many common elements e.g. encoding beta-galactosidase (lacZ gene), neomycin-resistance (neo gene), FRT and loxP sites. Further details can be found on http://www.knockoutmouse.org/about/eucomm The majority of cassettes will be either promoter driven where the neo gene contains its own promotor and is separated from the lacZ gene by a $3^{\text {rd }}$ loxP site, or promotorless (PL) where the neo and lacZ genes are adjacent and there are only 2 loxP sites. These have further implications in our genotyping strategies detailed later.

Promotor driven line

Promotorless line

Animals containing the full Knockout-First mutant allele (Tm1a) above can be crossed to mice expressing Flp or Cre recombinase. The progeny from these mating may contain converted forms of the Tm1a allele known as Tm1b, Tm1c and Tm1d depending on the breeding strategy performed. In order to genotype animals generated from the EUCOMM/KOMP-CSD 'Knockout-First' ES cell resource, a combination of mutant assays looking for sequences occurring in the targeting cassette, and WT specific assays will need to be performed. We typically use real time qPCR and copy count the various alleles. This assay design sheet will give an outline of how to genotype these lines by gel based and qPCR based technologies, as well as including details of assays we have tried and tested.

Yod1-Tm1a

Please note this allele was created by NARLabs so standard mutant assays may not work

Details for the tm1a allele can be found below
http://www.mousephenotype.org/data/alleles/MGI:2442596/tm1a(NARLabs)nlac/

Sequencing QC at Harwell has identified some differences compared to the standard Komp alleles

5mut-R1 gel based primer is present although surrounding sequence differs slightly.

Standard Komp allele
AAGGCGCATAACGATACCACGATATCAACAAGTTTGTACAAAAAAGCAGGCTGGCGCCGGAAC \qquad CTATTCTCTAGAAAGTATAGGAACTTCGAAC ССТTTCCCACACCACCCTCCACACTTGCCCCAAACACTGCCAAC

Yod1
GAAC \qquad TCCTATTC CCGAAGTI СтATTCTCTAGAAAGTATAGGAACTTCGAACCCTTTCCCACACCACCCTCCACACTTGCCCCAAACACTGCCAAC

Position where Neomycin probe is located differs by 1 bp $A>G$ (G in Micu1) This has caused the qPCR assay to run with a much lower intensity so an alternative Neo assay may be required.

```
gGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTC
```

3^{\prime} FRT is shown to be missing bases so may not work (missing sequence in yellow)
GAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC

Types of alleles

Promotor driven lines

Tm1b created by action of Cre recombinase on Tm1a allele

Tm1c created by action of Flp recombinase on Tm1a allele

Tm1d created by action of Cre recombinase on Tm1c allele

Promotorless lines

PL-Tm1b created by action of Cre recombinase on PL-Tm1a allele

Tm1c created by action of Flp recombinase on PL-Tm1a allele

Tm1d created by action of Cre recombinase on Tm1c allele

Gel based genotyping

The gel based assays are normally run on the Qiagen QIAxcel. This is a capillary based system that provides clearer resolution and is quicker than running standard agarose gels. Different size ladders maybe loaded onto runs depending on the fragment sizes being analysed. Typically samples are run with a $50-800 \mathrm{bp}$ size ladder.

PCR is performed using KAPA2G Fast Hotstart Readymix (2X), although alternatives may be used.

Generic 4 primer PCR mix		$60^{\circ} \mathrm{C}$ Cycling conditions		
KAPA2G Fast Hotstart Readymix (2X)	$5 \mu \mathrm{l}$	60TM30FA		
Primer 1F ($20 \mu \mathrm{M}$)	$0.5 \mu \mathrm{l}$	1.	$95^{\circ} \mathrm{C}$	1 min
Primer 1R $(20 \mu \mathrm{M})$	0.5 l l	2.	$95^{\circ} \mathrm{C}$	10sec
Primer 2F ($20 \mu \mathrm{M}$)	$0.5 \mu \mathrm{l}$	3.	$60^{\circ} \mathrm{C}$	10sec
Primer 2R ($20 \mu \mathrm{M}$)	$0.5 \mu \mathrm{l}$	4.	$72{ }^{\circ} \mathrm{C}$	1 sec
$\mathrm{H}_{2} \mathrm{O}$	$2.0 \mu \mathrm{l}$	5.	Go to 2 for 29 cycles	
DNA (~30ng)	$1 \mu \mathrm{l}$	6.	$72^{\circ} \mathrm{C}$	30sec
		7.	$16{ }^{\circ} \mathrm{C}$	forever

Types of gel based assay

The diagram below shows the location of the various gel based primers.

Mutant primer sequences

5mut-R1	GAACTTCGGAATAGGAACTTCG
LacZ-F	CCAGTTGGTCTGGTGTCA
SV40-FRT-F	CGCGTCGAGAAGTTCCTATT
5'CAS-F1	AAGGCGCATAACGATACCAC
3'CAS-R1	CCGCCTACTGCGACTATAGAGA
3'LOXP-R1	ACTGATGGCGAGCTCAGACC

Tm1a gel based genotyping

Tm1a gel based assays are designed using a universal mutant reverse primer that sits in the sequence just after the 5' homology arm

5mut-R1
GAACTTCGGAATAGGAACTTCG

A forward primer is designed to the 5^{\prime} homology arm and designed to give a mutant specific band, typically between 100-150bp that will only be present if the cassette is present.

A WT reverse primer is designed to the critical region and should give a product of >200bp. If the mutant cassette is present the product between the two primers is too large to PCR under standard conditions.

Yod1 Tm1a gel based genotyping

Yod1 'Knockout'-First and WT sequences
5'homology arm (last 300bp)

GTGTGTTAATTTCTTTTTATCTTGTGTCTCATACATACATACATACATACATACACACACAC ACACACACACACACACACTTGGACGTTGTGTTTATTGCTGTAGAATTAACCAACAGCAGTTACTTGTTCCCAGGTTTAGAACTTGAACGTCAGTGTTGACCATTCAAAGCTTTTTC CATTTTGTGGCAAGGCCCCTCGAATCGAGCTGTCAGATGGTATAGGCATGCGAAGTGCAAAGACACC

Mutant 5'sequence location of 5mut-R1 (mutant reverse primer)

GAACC

3'homology arm (1st 300bp)

TTGGCTCCAGAATGCATATAGAATGTTTAGTTGAGTGTAACCCATCAGTTACTTAAAGGACAAGGGTTGCCTGTTCACATTTGTGCCATTCAAGGTGCCACAGGAAATGCATTTGT ACCAAATTATTTGTTTTCTTTAAGAATGCCTTGTCAAAGGTTCAGAATGAAAAATAGTCTTATTGTGGCTGTACTAGCACAGTGGAAGCAGAGCTCCTTAAATAAGAAAATCATCA ATAAAGCCTGAAATACAGAGCTCAGAGCATAATTTCAAAAGTATAAAAGGGGGCCAAACAGAAAGAAT

5' homology arm and cassette sequence
GTGTGTTAATTTCTTTTTATCTTGTGTCTCATACATACATACATACATACATACACACACAC ACACACACACACACACACTTGGACGTTGTGTTTATTGCTGTAGAATTAACCAACAGCAGTTACTTGTTCCCAGGTTTAGAACTTGAACGTCAGTGTTGACCATTCAAAGCTTTTTC CATTTTGTGGCAAGGCCCCTCGAATCGAGCTGTCAGATGGTATAGGCATGCGAAGTGCAAAGAACACCGAACCGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGA ACTTCGAACCCTTTCCCACACCACCCTCCACACTTGCCCCAAACACTGCCAAC

Yod1 Tm1a gel based genotyping

Yod1 'Knockout'-First and WT sequences

Critical region

CCAGTGACCTACCTAGTCTGTGGAGAACATCTGAAAGATTTGGTTTTTAAGTTGAAATGCAGCGCGGAGCATTTTGTTCTGTTTGCCTCTTTCTGAAGACACTGAACTAAACACAAACAAACTTAGAGAGTTACTGGCCTCTTGTTTACAAAGTTGTGTTCTCCTT GGTAACCCGCTTTATACTTTTAACTCCTTTGCTTTCTAATTTTCTGAGTTGGCTAATAAACACCCAATCTATAATTTCTCTGCAGTTCTGGATTTGTTTTATTTTTGACAGGTGACATGCTGATTGTTGAAGAAGACCAAACCAGACCAAAAGCTTCACCTGCGTT TTCAAAATATGGTGCTCCTAGTTATGTCAGGGAAGCTCTGCCTGTGCTTACCAGAACCGCAGTCCCAGCAGACAACTCTTGCCTCTTTACCAGTGTGTACTATGTCGTGGAAGGAGGAGTCTTGAATCCAGCITGTGCCCCTGAGAIGAGACGCCTCATAGCACAA ATTGTAGCAAGTGATCCAGTCTTGTATAGTGAGGCGATACTGGGAAAGACAAACGAAGACTACTGTGATTGGATCAGAAGGGATGATACGTGGGGGGGGGCAATCGAGATCTCAATCCTGTCTAAGTHTTACCAATGIGAAATATGIGTAGTAGATACACAGACAG TCAGAATTGATCGTTTTGGGGAAGATGCAGGATATACCAAAAGAGTTCTGCTTATCTACGATGGCATTCACTACGATCCGCTTCAGCGTAACTTCCCTGATCCAGATACCCCTCCTCTGACCATTTTCTCCTCAAATGATGATATTGTTCTTGTACAAGCACTGGA ATTAGCTGATGAAGCTAGAAGAAAGAGACAGTICACTGATGTAAACCGCTTCACCCTGAGATGCATGATCTGTCAGAAGGGCCTAACCGGACAAGCAGAAGCAAGGGACCATGCCAGGGAGACAGGCCATACCAACTITGGAGAGGIGTGATCTATTCATAAGAGT GGGAGCCTACTACCTCACAGATCCAGAAGGCTCTGGGTTTTCCAATAAGCTATTCATAACCCTACAGAATAGAACACAATGCTTGGACCATCCTTTTATCCTAAACTAGTATGACTGACACTGAAATTCCTTGTTAAGATTAAAATCAGTGTGCAAGTTTACAGAT GTGTGTCTACACTAGTGGCATGCCCTCTTTCTACTGGGGGTCGGAATAAGGTGGTTTTGGCCACTTGGGATGCTAACCCGAAGACTGGATTATATTATAAACCAGCACCTAGTGGCTTTAGCTTATAGAAGAAAACATCATATTTTAGGTAATGTGGAAAGCCTTG AACTACTTACAAGTATA CTGTTGCCTMTCTTTTA ACATACATATAAATTTTTCTGAAGGGATTTGATTTCCTCAGCTCTTCAGCTCAAAGCACTTCTTACTAACAAGTCTTCCTCTAAAGTGTCAATGGAATGCTTTGGTTTCCTGAAACTCTTTTCCGTAGAGACAGTATTCATAGATCCACTATGATCTTTTGGATA TTTCACAGTTCTGCAAGTTAGTACTTTGTTCATCTGTGATCTTTGACTTTCAGTTTTTAAATAATTGATTTGGTTTGTTTCACTTAGAAAATATACAAAGTTTTAAAATCCTTGCCTTATACAGCTCTCTCAGAATATTGCTACCTAGTGTTAGGTATGTAGCCAT TTGCTTGATGGATTGATCCTCAAGGCACTTGCTCTCAAAACTTAGCTTCACTATAGAATCTTCCAGGTAAAGTTTTCTACCTCTTAATTCTTCTAAAGATCAGGGATGCTAAGTTATAATTTGTTGTATATCTGTCATACAGTGTATAGAGGCATAATGTTGTGAA GTTTTGTTATCTTGATCTCATTTATTAAATATCTCAGAGAACCATTTACACCAATGTGCTTTAAAGCACTTAACATCTTTCCATGATTCTTCTTAGCAAATGTTTTAAAATCAAAGTCAACCCTTAGCCTTTTACATGGTAATGGTGACCATGTCAAATTAAGGAA

 AAGATAGTTCTAGTGAGCTTAGGATGCCGGACACTTGGAGGTCATGACATGTAATGACTGTCACAAAAGTCTCTTCAGACCTGTCCTCTGGGTTAGATTTTTTAAATCTCTTTTGTTTTCTCTGTAAAATATTTAATTTAAAGCTGTACATTAAAACTGTAAAATT GGGTTATGCACCGTATTTATAGAGCTTACCTTTACCACTTGAGCATCCAAATTCAATATTTCTAAAAATTTGGATCCAAGTTTGTTCATGCAACAAGTATTTATTGAATAACTTATAATGTGTCAGGCATGTTCTATTTTTTGAAAATAAATTCCTGTCACTTTAA AATTGAGTCTATATAATGTACAGAGGATTHGIHAGTAAACGIAAAGAAAAGAAIGAGCACHGIAICHAAAAATCAAGTCTTTGTTCTAAGIGHATHGTAAGICITGTTTAGTATTTATTTAGGGGATTGTTTCTTATTCTATTTTTATCTTTTGCTTGGT TTGICAGG AGACACHGAGRAAA
 TATAAAGATACCCTAGTCACAGCAGTAGTCCAAATTAATGTCCCTGGGAATTTGTGATATGACACCACATGAAGGCATCTAGATGCTACCACATCTTTTGCTAGCGATTCATGGTTGATTTCTTAAAGCTCTCCATGAATGAAGTCATAGGCAAGGGGTTACTGG CCAACCTAACCTTGTTGTTAGGAACTGATACCATTAATACCATTTGAATACTCTATTGAGTTCAAGTCCCAGAAAAATCAGAATCCCAAATTAACATTATTTCCCTGCCCGGGTGTGCGCCTAACTGCTCCTGCCTAACTTACTTGTCTAACTTACTTGTCTGCCT AGCTTCTTСССТTCAAGCTGCCCTAGGTGAATTTTCTATCTTTGTGGAAAATTACAGTAGGATGTATATGAAATTAAGCAGCAATGATCCATACACACACACACACACGTTATATATTTAAAAATCAGGTGGCCTTCTGAAATTTACATATTAAAATTTACATTT TTCATGTGTTGGAACATCATTTGCAGCATTTTTTTCTTTTTTTTCTTTTCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGACAGGGTTTCTCTGTGTAGCTCTGGCTGTCCTGGAACTCTGTAGACCAGGCTGGCCTCGAACTCAGAAATCTGCCTGCCTCT GCCTCCTGAGTGCTAGGATTAAAGGCGTGTGCCACCACGTCTGGCTCATTTGCAGCACTTTTAAAAATTAGAGAATAAAAGTTTHACATAGCTCTCTAGAAGACCICGAGGGCAGIAAIGATACAACCCCAAGCCAGCIGCIAGCCAGCAGCTCTCATACGCIATTGC CATCAGTATTTATGTATCTTATGATACAGTCTAATITCACICACTGTTAGGACCAGGGICTATGTCCTAACGTAAGGAATAATACTTCTGTAATGTGATTGTTCTGTAATGTGATCICTAAAGAGICGATTCATCAAACCTITCATICATHTTAAGCAAACTTATT TTGGAAGAAATTGATTTTTGAGTAAGATATGCAAGCAGTATTTGCAAATCTAAAGGAACACTTTATTTGAATAAGCTAGTTTGTTACTCATGCTAAGCATCGAACCAGGGCTTTTTGCTGCAAGGGTAAGTGCTTAGCGATCAGCATTCCACCCCGGATGGTTTCT
 ACTGAATTATGAAGTGTTTGTGTCTACATTCATTTGATTTAA

Yod1 Tm1a gel based genotyping

Yod1 'Knockout'-First and WT sequences

Genomic sequence
Black sequence is missing in the construct due to the insertion of loxP sites and can be used to design break point (BP) qPCR assays
GTGTGTTAATTTCTTTTTATCTTGTGTCTCATACATACATACATACATACATACACACACACACACACACACACACACACTTGGACGTTGTGTTTATTGCTGTAGAATTAAC CAACAGCAGTTACTTGTTCCCAGGTTTAGAACTTGAACGTCAGTGTTGACCATTCAAAGCTTTTTCCATTTTGTGGCAAGGCCCCTCGAATCGAGCTGTCAGATGGTATAGGCATGCGAAGTGCAAAGAACACCCCAGTGACCTACCTAGTCTGTGGAGAACATCT GAAAGATTTGGTTTTTAAGTTGAAATGCAGCGCGGAGCATTTTGTTCTGTTTGCCTCTTTCTGAAGACACTGAACTAAACACAAACAAACTTAGAGAGTTACTGGCCTCTTGTTTACAAAGTTGTGTTCTCCTTGGTAACCCGCTTTATACTTTTAACTCCTTTGC TTTCTAATTTTCTGAGTTGGCTAATAAACACCCAATCTATAATTTCTCTGCAGTTCTGGATTTGTTTTATTTTTGACAGGTGACATGCTGATTGTTGAAGAAGACCAAACCAGACCAAAAGCTTCACCTGCGTTTTCAAAATATGGTGCTCCTAGTTATGTCAGGG AAGCTCTGCCTGTGCTTACCAGAACCGCAGTCCCAGCAGACAACTCTTGCCTCTTTTACCAGTGTGTACTATGTCGTGGAAGGAGGAGTCTTGAATCCAGCTTGTGCCCCTGAGATGAGACGCCTCATAGCACAAATTGTAGCAAGTGATCCAGTCTTGTATAGTGA TATACCAAAAGAGTTCTGCTTATCTACGATGGCATTCACTACGATCGGTTCAGCGTAACTTCCTMATCCAGATACCCTCCTCTGACCATTTTCTCCTCAAATGATGA TCACTGATGTAAACCGCTTCACCCTGAGATGCATGATCTGTCAGAAGGGCCTAACCGGACAAGCAGAAGCAAGGGACCATGCCACGGAGACAGGCCATACCAACTTTGGAGAGGTGTGATCTATTCATAAGAGTGGGAGCCTACTACCTCACAGATCCAGAAGGCT CTGGGTTTTCCAATAAGCTATTCATAACCCTACAGAATAGAACACAATGCTTGGACCATCCTTTTATCCTAAACTAGTATGACTGACACTGAAATTCCTTGTTAAGATTAAAATCAGTGTGCAAGTTTACAGATGTGTGTCTACACTAGTGGCATGCCCTCTTTCT ACTGGGGGTCGGAATAAGGTGGTTTTGGCCACTTGGGATGCTAACCCGAAGACTGGATTATATTATAAACCAGCACCTAGTGGCTTTAGCTTATAGAAGAAAACATCATATTTTAGGTAATGTGGAAAGCCTTGTGGAGGGCCACTGGACATATACCACAATGTCT CCAGTAGTTGATTCCTTTTAATAACTTTGAATGAGTTAGTAGTTTCTAAATTCTGAATTGATCCATCAAATGAAGATACTCAGAATTGTCAAAACTTTTTATATTGCAATTTGGTAGACTTTATAAGTGTATCTAACTACTTACAAGTATATTGAAAGCAATTTTA CGGGGAGAAGTATGTCCCTTGAGAATGTTATCTAAAACAGGGATTAATATGGCCCTGTTGCGATTTCTAGTGTATAAAAGTAGAATGTATAAGGGGAAAAGGTGCCTGAAGCAGCTTCCTGAAGCTTTAAAAGACTGTTGGCCTCTIGTTTTAATGCAATTCATGT
 TTTССТСАGСТСTTCAGCTCAAAGCACTTCTTACTAACAAGTCTTCCTCTAAAGTGTCAATGGAATGCTTTGGTTTCCTGAAACTCTTTTCCGTAGAGAACAGTATTCATAGATCCACTATGATCTTTTGGATATTTCACAGTTCTGCAAGTTAGTACTTTGTTCA TСTGTGATCTTTGACTTTCAGTTTTTAAATAATTGATTTGGTTTGTTTCACTTAGAAAATATACAAAGTTTTAAAATCCTTGCCTTATACAGCTCTCTCAGAATATTGCTACCTAGTGTTAGGTATGTAGCCATTTGCTTGATGGATTGATCCTCAAGGCACTTGC TCTCAAAACTTAGCTTCACTATAGAATCTTCCAGGTAAAGTTTTCTACCTCTTAATTCTTCTAAAGATCAGGGATGCTAAGTTATAATTTGTTGTATATCTGTCATACAGTGTATAGAGGCATAATGTTGTGAAGTTTTGTTATCTTGATCTCATTTATTAAATAT CTCAGAGAACCATTTACACCAATGTGCTTTAAAGCACTTAACATCTTTCCATGATTCTTCTTAGCAAATGTTTTAAAATCAAAGTCAACCCTTAGCCTTTTACATGGTAATGGTGACCATGTCAAATTAAGGAATATTAAAGTGAACAATTTAGAAAGTTCCTTTA AGGACAATTGAACAATTCACAAAGTATGCTTCAATCATCCAATGAGATTCTCTTTTGTGTTGAGACAAAGTCTCCCTGTGTGTTTCTTGTCGGCCTGGAATTTGTTATATAGACCAGGCTCCTCCAACTCAAAGTGATCCTTCTGCCTCTGCCTTCTGAGTGTTGA
 TACCACTTGAGCATCCAAATTCAATATTTCTAAAAATTTGGATCCAAGTTTGTTCATGCAACAAGTATTTATTGAATAACTTATA TTAGTAAACGTAAAGAAATAGAATGAGCACTGGTATCTTAAAAATCAAGTCTTTGTTCTAAGTGTTATTTGTATGTCTTGTTTAGTATTTATTTAGGGGATTGTTTCTTATTCTATTTTTATCTTTTGCTTGGTTTGTCAGGTAGACACTTGATAGTAAAATGGCT TTCAAAAAGACATTTTAATCATTTGCTGATATGAGAACTGGTTTGAGAGTAGTGTTTTTGTTGTGAAACATTCCAGGTGAAGCATTATATGCAAATTATTTAATTATTAATTTCTGTTCATTCCAAATACAAGCTGTTAAGCCTCATAGAATTTAAAAGATTTGTT TCATATTTTTTCCTGTATTTATTAAGCTCTTGAAATTGTGAGGAAACTCATTTTTAGAATTTTGAAAAAAAAATCTGTGAATTTAGTTGCAGCAACGCTAAAAAAAAAAAAAAACACCAAAAACAAAAAGAAACCTATGTCCTAATGAAACCCATTCTGTCCA GTTTTTGCCTGTCCTACAATAATTATTTTTAATTAAAATGAGTCAATTTACATTAGTGGTAGAATAAAAATTATGCTTTGACCCCATTTCCCCAGTACCCCCCACTCTTTTAGATTAAAGATTCGGTGTGTTTTTATAAAGATACCCTAGTCACAGCAGTAGTCCA AATTAATGTCCCTGGGAATTTTGTGATATGACACCACATGAAGGCATCTAGATGCTACCACATCTTTTGCTAGCGATTCATGGTTGATTTCTTAAAGCTCTCCATGAATGAAGTCATAGGCAAGGGGTTACTGGCCAACCTAACCTTGTTGTTAGGAACTGATACC ATTAATACCATTTGAATACTCTATTGAGTTCAAGTCCCAGAAAAATCAGAATCCCAAATTAACATTATTTCCCTGCCCGGGTGTGCGCCTAACTGCTCCTGCCTAACTTACTTGTCTAACTTACTTGTCIGCCTAGCTTCTTCCCTTCAAGCTGCCCTAGGTGAAT TTTCTATCTTTGTGGAAAAATTACAGTAGGATGTATATGAAATTAAGCAGCAATGATCCATACACACACACACACACGTTATATATTTAAAAATCAGGTGGCCTTCTGAAATTTACATATTAAAATTTACATTTTTCATGTGTTGGACATCATTTGCAGCATTTT TTTCTTTTTTTCTTTTCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGACAGGGTTTCTCTGTGTAGCTCTGGCTGTCCTGGAACTCTGTAGACCAGGCTGGCCTCGAACTCAGAAATCTGCCTGCCTCTGCCTCCTGAGTGCTAGGATTAAAGGCGTGTGC CACCACGTCTGGCTCATTTGCAGCACTTTAAAAATTAGAGAATAAAAGTTTACATAGCTCTCTAGAAGACCTCGAGGGCAGTAATGATACAACCCCAAGCCAGCTGCTAGCCAGCAGCTCTCATACGCTATTGCCATCAGTATTTATGTATCTTATGATACAGTCT AATTTCACTCACTGTTAGGACCAGGGTCTATGTCCTAACGTAAGGAATAATACTTCTGTAATGTGATTGTTCTGTAATGTGATCTCTAAAGAGTCGATTCATCAAACCTTTCATTCATTTTAAGCAAACTTATTTTGGAAGAAATTGATTTTTGAGTAAGATATGC
 TTTGATTTAAGGCAGGGTGTTAGCCTTCCCATGGCATTTTCAAGTGAAAGGATGGGTACTACTGAAAAGATGTATACGGCCGTGAACACAAGCTTTGAAACACATGAACCTGTAATTAGTAATTTAAGTATAGTGAATGAATGACGTGGTTTAGTTATAGGTAAG GAGGCTGAGGATTTCTACCGAGCTGATGTGGCTTGGCTCCAGAATGCATATAGAATGTTTAGTTGAGTGTAACCCATCAGTTACTTAAAGGACAAGGGTTGCCTGTTCACATTTGTGCCATTCAAGGTGCCACAGGAAATGCATTTGTACCAAATTATTTGTTTTC TTTAAGAATGCCTTGTCAAAGGTTCAGAATGAAAAATAGTCTTATTGTGGCTGTACTAGCACAGTGGAAGCAGAGCTCCTTAAATAAGAAAATCATCAATAAAGCCTGAAATACAGAGCTCAGAGCATAATTTCAAAAGTATAAAAGGGGCCAAACAGAAAGAAT

Tm1a gel based genotyping

Yod1 tm1a gel based primers

Yod1-5arm-WTF Yod1-Crit-WTR

5mut-R1
GAACTTCGGAATAGGAACTTCG

WT band 280
Mutant band 129

Example of a generic TM1A assay

PCR mix

KAPA2G Fast Hotstart Readymix (2X)	$5 \mu \mathrm{l}$
5arm-WTF $(20 \mu \mathrm{M})$	$0.5 \mu \mathrm{l}$
Crit-WTR $(20 \mu \mathrm{M})$	$0.5 \mu \mathrm{l}$
5mut-R1 $(20 \mu \mathrm{M})$	$0.5 \mu \mathrm{l}$
$\mathrm{H}_{2} \mathrm{O}$	$2.5 \mu \mathrm{l}$
DNA ($\sim 30 \mathrm{ng})$	$1 \mu \mathrm{l}$

Cycling conditions

60TM30FA

1. 950 C 1 min
2. $95{ }^{\circ} \mathrm{C}$ 10sec
3. $\mathbf{6 0}{ }^{\circ} \mathrm{C}$ 10sec.
4. $722^{\circ} \mathrm{C} \quad 1 \mathrm{sec}$.
5. Go to 2 for 29 cycles
6. $72 \cong \mathrm{C}$ 30sec.
7. $16{ }^{\circ} \mathrm{C}$ forever
8. end

Tm1b gel based genotyping

Promotor driven genotyping

Tm1b alleles are produced by exposing tm1a alleles to cre recombinase which causes the deletion of Neo and the critical region.
If the deletion of the critical region has not occurred

then a product is produced between the -Crit-WTF and the -3arm-WTR. Complete conversion by Cre will mean a product is produced from the LacZ-F and -3arm-WTR as the two primers now lie close enough to generate a PCR product under standard conditions. Run both the tm1a genotyping protocol to detect WT and tm1a alleles and the tm1b protocol to detect converted alleles.

Promotorless genotyping

PL-Tm1b (promotorless tm1b) mice are produced in a similar fashion but only the deletion of the critical region occurs and Neo is still present. If the deletion of the critical region has not occurred then a product is produced between the Crit-WTF and the
 3arm-WTR. Complete conversion by Cre will mean a product is produced from the SV40-FRT-F and 3arm-WTR as the two primers now lie close enough to generate a PCR product under standard conditions. This will not work for promotor driven lines as the presence of the 5^{\prime} loxP site between the Neo and lacZ sequence causes this region to be removed by cre deletion. Run both the tm1a genotyping protocol to detect WT and tm1a alleles and the tm1b protocol to detect converted alleles.

Tm1c and Tm1d gel based genotyping

Tm1c genotyping

Tm1c alleles are produced by exposing tm1a alleles to flp recombinase which causes the deletion of Neo and LacZ sequences that are between the FRT sites.

The protocol for tm1a genotyping needs to be run. Both tm 1 a and tm 1 c alleles will produce a mutant specific product from -5arm-WTF and 5mut-R1. WT and tm1c alleles will produce PCR products from -5arm-WTF and Crit-WTR although the tm1c product will be around 200bp bigger due to the presence of the FRT-loxP part of the cassette. In addition to this a generic tm1c assay can be used. This uses the 5'CAS-F1 and 3'CAS-R1 primers run with an internal control. The tm1c allele produces a 218bp product.
Tm1d genotyping

Tm1d mice are produced by crossing tm1c animals with mice expressing cre recombinase. This causes the deletion of the critical region.

The tm1d allele produces a 174bp product from the 5'CAS-F1 and 3'LOXP-R1 primers. A tm1c allele will produce a larger product which includes the critical region sequence. If the critical region is very large then a gene specific primer lying in the critical region may be needed to detect it (Crit-WTR).

Yod1

Gel based genotyping strategy summary

Primers to use											
	5^{\prime} CAS-F1	5mut-R1	LacZ-F	SV40-FRT-F	3'CAS-R1	3'LOXP-R1	5arm-WTF	Crit-WTF	Crit-WTR	3arm-WTR	Comments
Tm1a + PL		\checkmark					\checkmark		\checkmark		
Tm1b			V					V		\checkmark	Run tm1a protocol to identify WT alleles
PL-Tm1b				V				V		\checkmark	Run tm1a protocol to identify WT alleles
Tm1c	\checkmark	V			\checkmark		V		\checkmark		Blue =separate reaction
Tm1d	\checkmark					V			\checkmark		Run tm1a protocol to identify WT alleles

- WT Product between 5arm-WTF and Crit-WTR (product too big in tm1a).
- Tm1a Product between 5arm-WTF and 5mut-R1.
- Tm1b Product between LacZ-F and 3arm-WTR (product too big in tm1a but PCR product from Crit-WTF and 3arm-WTR is made).
- Tm1b-PL Product between SV40-FRT-F and 3arm-WTR (product too big in tm1a but PCR product from Crit-WTF and 3arm-WTR is made).
- Tm1c 218bp product between 5'CAS-F1 and 3'CAS-R1 made. Can also run tm1a protocol for a gene specific assay.
- Tm1d 174bp product produced from 5'CAS-F1 and 3'LOXP-R1. Larger product may be produced by tm1c.

qPCR based genotyping

Standard PCR is the amplification of DNA between a pair of primers. Quantitative PCR employs the same principal as standard PCR, although it actually monitors the progress of the DNA synthesis as it occurs. The progress of the reaction is measured by using a Taqman probe. This is a short DNA oligo that is complimentary to part of the DNA sequence between the forward and reverse primers. At the 5^{\prime} end of the probe there is a fluorescent reporter (R) and at the 3^{\prime} end a quencher (Q). Whilst they are in close contact with each other there is no fluorescent signal.

Reporter released, fluorescent signal observed

Fluorescent signal quenched

As the forward primer is extended the reporter is cleaved from the probe resulting in a fluorescent signal being detected. Once the primer extends enough to release the quencher this signal is blocked. By using probes with different fluorescent signals multiple PCR assays can be multiplexed and run together.

The number of cycles the PCR takes to reach a set threshold is known as the CT value. This is inversely correlated to the amount of template DNA in the sample.
e.g. CT $25=2 x$ template DNA

CT $26=1 \times$ template DNA
CT above $30=$ no template represented in the sample

CT value can be used to determine how many copies of a particular allele samples have.

qPCR assay types

All qPCR assays are FAM labelled and run in duplex with a VIC labelled internal control, Dot1I. There are 4 mutant qPCR assays based around the targeting cassette. They are as follows:

: Neomycin assay	Designed around the sequence of the neomycin resistance cassette. (PROBE DIFFERS BY 1BP)
$:$ LacZ assay	Designed around the sequence of the LacZ reporter.
$:$ Promotor driven Tm1b	Designed to detect the recombined sequence when a promotor driven tm1a allele is converted to a tm1b allele. The forward primer is based on the region of sequence of the cassette between LacZ and Neo sequences just upstream of the 5' most loxP. This is not present in promotorless alleles. The reverse primer is based on sequence found in the 3' loxP region. (MAY NOT WORK AS CONSTRUCT DIFFERS SLIGHTLY)
: FRT-loxP	Designed to detect the recombined sequence of the FRT and loxP area created when the Tm1a allele is Flp converted to the tm1c. The forward primer is based on the sequence of the 5' region upstream of the 5' FRT site which means this assay will only work for Tm1c/d. (MAY NOT WORK AS CONSTRUCT DIFFERS SLIGHTLY)

There are 2 WT qPCR assays based on WT sequence that may be lost in Tm1a/b/c/d alleles. They are as follows:
$: B P-L O A \quad$ Break Point loss of allele assay. This is based on WT sequence that is lost around the loxP sites of the synthetic cassette. This detects any cassette and should drop in copy number if a tm1a/b/c or dallele is present.
:CR-LOA Critical Region loss of allele assay. This is based on the critical region sequence that is flanked by the two loxP sites. This will only drop in copy number if a tm1b or tm1d is present.

qPCR based methods to distinguish alleles

Run either LacZ or Neo which will identify the cassette and the BP-LOA which will identify the correct line as this should drop in copy number if the cassette has replaced the WT allele. The critical region should be 2 copies and may be run to distinguish tm1a alleles from tm1b alleles. Both the promotor driven tm1b and FRT-loxP should not work as they detect recombined cassettes ($\mathrm{tm} 1 \mathrm{~b} / \mathrm{c} / \mathrm{d}$) not the complete cassette (tm1a).

For both promotor driven and promotorless lines a drop in the CR-LOA copy number identifies the correct gene has been targeted. For promotor driven lines if the CR drops and the promotor-tm1b assay calls positive by the same value as the drop then the allele has been fully converted to a tm1b. A drop in Neo and the CR-LOA also would signify the same thing. For promotorless lines just a drop in the CR is enough to identify a tm1b or dallele and the presence of Neo or LacZ indicates it is not a tm1d.

qPCR based methods to distinguish alleles continued

Tm1c

A positive result for FRT-loxP confirms a tm1c or d allele. Running the BP-LOA and a drop in copy number will confirm the correct line has been targeted. To distinguish between tm1c and a tm1d allele (below) the CR-LOA must also be run. A drop in copy number for the CR-LOA indicates a tm1d allele.

Tm1d

CR-LOA

qPCR mutant assay sequences

NEO assay (FAM labelled probe)

ATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGAC \qquad AGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTM CTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCT Primer $1=$ GGTGGAGAGGCTATTCGGC Primer $2=$ GAACACGGCGGCATCAG Probe = TGGGCACAACAGACAATCGGCTG

LacZ assay (FAM labelled probe)

CGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAGTTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTAACGCCTGGGTCGAACGCT GGAAGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACC TTATTTATCAGCCGGAAAACCTACC TTACCGTTGATGTTGAAGTGGCGAGCGATACACCGCATCCGGCGCGGATTGGCCTGAACTGCCA GCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGATCTGCCATTGTCAGACATGT

Primer 1 = CTCGCCACTTCAACATCAAC

$$
\text { Primer } 2 \text { = TTATCAGCCGGAAAACCTACC Probe }=\text { TCGCCATTTGACCACTACCATCAATCC }
$$

Promotor-Tm1b-Mut1 (FAM labelled probe)

ATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTC ACTCATCAATGTATCTTATCATGTCTGGATCCGGAATAACTTCGTATAGCATACATTATACGAAGTTATGGTCTGAGCTCGCCATCAGTTCA
Primer 1 = CACTGCATTCTAGTTGTGGTTTGTC Primer $2=$ ACTGATGGCGAGCTCAGACCAT Probe = TCTGGATCCGGAATAACTTCGTATAGCA

FRT-LOXP-mut2 assay (FAM labelled probe)

```
AAGGCGCATAACGATACCACGATATCAACAAGTTTGTACAAAAAAGCAGGCTGGCGCCGGAACCGAAGTTCCTAT
```



``` AAGTATAGGAACTTC<GTC
``` GAGATAACTT>CGTATAGCATACATTATACGAAG
Primer 1 = AGGCGCATAACGATACCACGATA

\section*{qPCR WT assay sequences}

Example of a BP-LOA-wt1 assay (FAM labelled probe)
Blue \(=\) Sequence in homology arm \(\quad\) Black \(=\) breakpoint \(\quad\) Red \(=\) critical region
TACAACTCTGTATGAGCCCATTCCTCCTCCTGGAAGAACACATATTTGGATTGATTTTAACTCGGATTTTGCAGGCTGCTTTTGCACTTGAAACTGTTTTAAATATATTAC<CCAA ACCAATCTTGGCAAGTTAGCAAGCCTTTTTAG \(\qquad\) ACAT ICGG \(\square\) TGAAACACTC>CGTCATTCTCCATTATTTTGGGTTTTGTTTAGATCAGAAACTTTGCAA TGAACTTTTCGTGCATGGCTGGTCAGTGTCTAAACCATGCTCTGTAGATAAAGTTTCTAAGCCTTGAGGTTGCCTTTCCAGACTTGTGTCAGCTGACGAGGGTAGAGTTCTGCTAC

Primer 1 = GGCTGCTTTTGCACTTGAAAC Primer \(2=\) CCAGCCATGCACGAAAAGTTC Probe \(=\) AGACACATCGGTGAGTCGGTGGTTT

Yod1-CR-LOA-wt1 assay (FAM labelled probe)

AAGCAGTATTTGCAAATCTAAAGGAACACTTTATTTGAATAAGCTAGTTTGTTACTCATGCTAAGCATCGAACCAGGGCTTTTTGCTGCAAGGGTAAGTGCTTAGC ATCAGCATT
CAACCCGGATGGTTTCTTAGTGCCTATTGTAATGTGCAGCACATCCAACTCAATGAATACAAGGCTGCCTTGGTTGTGGGAAAGGTTTGGGTTTTTGTTG

Primer \(1=\) TGCTGCAAGGGTAAGTGCTTAG Primer \(2=\) GGCAGCCTTGTATTCATTGAGTTG Probe = ATCAGCATTCCACCCCGGATGGT

All qPCR assays are run in duplex with a VIC labelled internal control, Dot1I

Dot1l internal control (VIC labelled internal control)
AACCAGTGGGCAGTGGATGTGAAGGGCAGGAAGCTCATAGGGTGACTGGCCAACCCAGGGAAGCCGGAGTGCTGCGTCTTCTGTTTCCTTGTTCTTTTCCCCTCTAGTCGTTTTCT GTTAGTAGTTGGCATCCTTATGCTTCATCTTACAGTCGACTTGAGAGCTGGCCCTGAATGGTCGTGCTGGGGCAAGGCTTTATTTCAGGCGTAGCACACATGGTGGCCAATGGGAC TCTGTAGGATCTGCCCACACCCATCAGGTGTGCAGGGAGACAGAGCTGAGTCAGGCTCCAGCTCTGGGGAATATGTTGAGTCACCACCTCTGTAGGGTGGTTGTGCATCATAGAAC

Primer 1 = GCCCCAGCACGACCATT
Primer 2 = TAGTTGGCATCCTTATGCTTCATC
Probe = CCAGCTCTCAAGTCG

\section*{qPCR genotyping set up}
qPCR master mix
\begin{tabular}{lr}
ABI GTX Taqman master mix & \(5 \mu \mathrm{l}\) \\
Primers Dot1L_2F \((20 \mu \mathrm{M})\) & \(0.225 \mu \mathrm{l}\) \\
Primers Dot1L_R \((20 \mu \mathrm{M})\) & \(0.225 \mu \mathrm{l}\) \\
Probe DotL_2M \((5 \mu \mathrm{M})\) & \(0.2 \mu \mathrm{l}\) \\
FAM Assay (probe \(5 \mu \mathrm{M}\) \& primers \(15 \mu \mathrm{M}\) each) & \(0.3 \mu \mathrm{l}\) \\
Water & \(1.55 \mu \mathrm{l}\)
\end{tabular}

\section*{Generic example of a NEO + BP-LOA copy called result}
ALIQUOT \(7.5 \mu \mathrm{~L}\)
DNA
(1/10 dilution of ABI Sample-to-SNP prep)

The results to the right have been run on an \(A B I 7500\) and analysed using the ABI software CopyCaller. Each sample was run with a technical duplicate and for each assay, Neo and the BP-LOA, 7 controls of known copy number and a no template control, all in duplicate, were run so the software can accurately copy count.

Yod1

\section*{qPCR based genotyping strategy summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Assay to use and copy number expected per allele} \\
\hline & \multicolumn{2}{|r|}{NEO} & \multicolumn{2}{|l|}{LACZ} & \multicolumn{2}{|l|}{FRT-loxP} & \multicolumn{2}{|l|}{Tm1b} & \multicolumn{2}{|l|}{BP-LOA} & \multicolumn{2}{|l|}{CR-LOA} \\
\hline WT & \(\checkmark\) & 0 & & & & & & & \(\checkmark\) & 1 & & \\
\hline Tm1a + PL-Tm1a & V & 1 & & & & & & & \(\checkmark\) & 0 & & \\
\hline Tm1b & \(\checkmark\) & 0 & V & 1 & & & & 1 & & & \(\checkmark\) & 0 \\
\hline PL-Tm1b & V & 1 & \(\checkmark\) & 1 & & & & & & & \(\checkmark\) & 0 \\
\hline Tm1c & & & & & \(\checkmark\) & 1 & & & \(\checkmark\) & 0 & & \\
\hline Tm1d & & & & & \(\checkmark\) & 1 & & & \(\checkmark\) & 0 & \(\checkmark\) & 0 \\
\hline
\end{tabular}

Promotor-Tm1b assay is an additional assay that can be run to help identify fully recombined tm1b promotor driven alleles
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Expected copy number per animal} \\
\hline & NEO & LACZ & FRT-loxP & Tm1b & BP-LOA & CR-LOA \\
\hline WT & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline Tm1a-HET & 1 & 1 & 0 & 0 & 1 & 2 \\
\hline Tm1a-HOM & 2 & 2 & 0 & 0 & 0 & 2 \\
\hline Tm1b-HET & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline Tm1b-HOM & 0 & 2 & 0 & 2 & 0 & 0 \\
\hline PL-Tm1b-HET & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline PL-Tm1b-HOM & 2 & 2 & 0 & 0 & 0 & 0 \\
\hline Tm1c-HET & 0 & 0 & 1 & 0 & 1 & 2 \\
\hline Tm1c-HOM & 0 & 0 & 2 & 0 & 0 & 2 \\
\hline Tm1d-HET & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline Tm1d-HOM & 0 & 0 & 2 & 0 & 0 & 0 \\
\hline
\end{tabular}

\footnotetext{
Assays that are normally run to detect allele
Assays not normally run
}

Please note copy numbers are based on what is expected for autosomal genes

\section*{Yod1}

\section*{Allele conversions}

The action of either Flp or Cre recombinase can be used to convert the KO \({ }^{\text {st }}\) alleles described in this document. Both gel based and qPCR genotyping methods may be employed to detect animals carrying the DNA sequences coding for these proteins.

\section*{Cre genotyping}

Cre gel based assays are run using primers specific to DNA sequences encoding Cre recombinase as well as a set of primers detecting a house keeping gene SIc40a1. These are run using the same cycling conditions as described in page 4.

ActinB-Cre gel based primers
\begin{tabular}{ll}
Cre_F1 & GCGGTCTGGCAGTAAAAACTATC \\
Cre_R1 & GTGAAACAGCATTGCTGTCACTT \\
Slc40a1_sh_F (control) & CCTTTGTAACTTCCTCTGTGTC \\
SIc40a1_sh_R (control) & CTGAAGTCTTTCATGATAACTGCATT
\end{tabular}

Fragment sequences
Slc40a1
147bp
CCTTTGTAACTTCCTCTGTGTCTTTATTTTAGCCTAAACAGCAAAGACTTAAAAGATGGATCTTATCTGGAGAATAGTTCTATTTAGTCCAGCAAACTTTCTAGTAAATATGTTAG ATGAAAATGCAGTTATCATGAAAGACTTCAG

Cre1
102bp
GCGGTCTGGCAGTAAAAACTATCCAGCAACATTTGGGCCAGCTAAACATGCTTCATCGTCGGTCCGGGCTGCCACGACCAAGTGACAGCAATGCTGTTTCAC

Yod1

\section*{Allele conversions}

\section*{Cre genotyping}

Cre qPCR assay (FAM labelled probe)
ATGTCCAATTTACTGACCGTACACCAAAATTTGCCTGCATTACCGGTCGATGCAACGAGTGATGAGGTTCGCAAGAACCTGATGGACATG
TCTGA
GCATACCTGGAAAATGCTTCTGTCCGTTTGCCGGTCGTGGGCGGCATGGTGCAAGTTGAATAACCGGAAATGGTTTCCCGCAGAACCTGAAGATGTTCGCGATTATCTTCTATATC TTCAGGCGCGCGGTCTGGCAGTAAAAACTATCCAGCAACATTTGGGCCAGCTAAACATGCTTCATCGTCGGTCCGGGCTGCCACGACCAAGTGACAGCAATGCTGTTTCACTGGTT

Primer \(1=\) CGCAAGAACCTGATGGACATG Primer \(2=\) ACCGGCAAACGGACAGAA Probe \(=\boldsymbol{T T}\) CAGGGATCGCCAGGCGTTT
qPCR set up for the Cre assay is exactly the same as previously, where the assay is run in duplex with a VIC labelled Dot1l internal control.

\section*{Yod1}

\section*{Allele conversions}

\section*{Flpe genotyping}

Flpe gel based assays are run using primers specific to DNA sequences encoding Flpe recombinase as well as a set of primers detecting a house keeping gene SIc40a1. These are run using the same cycling conditions as described in page 4.

Flpe gel based primers
\begin{tabular}{ll}
ICS_Flpe_F & TCTTTAGCGCAAGGGGTAGGATCG \\
ICS_Flpe_R & GTCCTGGCCACGGCAGAAGC \\
Slc40a1_sh_F (control) & CCTTTGTAACTTCCTCTGTGTC \\
SIc40a1_sh_R (control) & CTGAAGTCTTTCATGATAACTGCATT
\end{tabular}

Fragment sequences

\begin{abstract}
Slc40a1 147bp
\end{abstract}

ССТTTGTAACTTCCTCTGTGTCTTTATTTTAGCCTAAACAGCAAAGACTTAAAAGATGGATCTTATCTGGAGAAtagttctatttagtcCAGCAAACTTTCTAGTAAATATGTTAG ATGAAAATGCAGTTATCATGAAAGACTTCAG

ICS-Flpe1
332bp
TCTTTCTTTAGCGCAAGGGGTAGGATCGATCCACTTGTATATTTGGATGAATTTTTGAGGAATTCTGAACCAGTCCTAAAACGAGTAAATAGGACCGGCAATTCTTCAAGCAACAA ACAGGAATACCAATTATTAAAAGATAACTTAGTCAGATCGTACAACAAGGCTTTGAAGAAAAATGCGCCTTATCCAATCTTTGCTATAAAGAATGGCCCAAAATCTCACATTGGAA GACATTTGATGACCTCATTTCTGTCAATGAAGGGCCTAACGGAGTTGACTAATGTTGTGGGAAATTGGAGCGATAAGCGTGCTTCTGCCGTGGCCAGGAC

\section*{Yod1}

\section*{Allele conversions}

\section*{Flpe genotyping}

Flpe qPCR assay (FAM labelled probe)

GGTAGGATCGATCCACTTGTATATTTGGATGAATTTTTGAGGAATTCTGAACCAGTCCTAAAACGAGTAAATAGGACCGGCAATTCTTCAAGCAACAAACAGGAATACCAATTATT AAAAGATAACTTAGTCAGATCGTACAACAAGGCTTTGAAGAAAAATGCGCCTTATCCAATCTTTGCTATAAAGAATGGCCCAAAATCTCACATTGGAAGACATTTGATGACCTCAT TTCTGTCAATGAAGGGCCTAACGGAGTTGACTAATGTTGTGGGAAATTGGAGCGATAAGCGTG \(\square\) GTATACTCATCAGATAACAGCAATACCTGAT CACTACTTCGCACTAGTTTCTCGGTACTATGCATATGATCCAATATCAAAGGAAATGATAGCATTGAAGGATGAGACTAATCCAATTGAGGAGTGGCAGCATATAGAACAGCTAAA GGGTAGTGCTGAAGGAAGCATACGATACCCCGCATGGAATGGGATAATATCACAGGAGGTACTAGACTACCTTTCATCCTACATAAATAGACGCATATAAT

Primer 1 = GTGGGAAATTGGAGCGATAAGC
Primer 2 = ACCGAGAAACTAGTGCGAAGTAG
Probe =
CTTCTGCCGTGGCCAGGACAAC
qPCR set up for the Flpe assay is exactly the same as previously, where the assay is run in duplex with a VIC labelled Dot1l internal control.```

